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Abstract

This paper addresses the challenge of online gen-
eralization in tree search. We propose Multiple
Estimator Monte Carlo Tree Search (ME-MCTYS),
with a two-fold contribution: first, we introduce a
formalization of online generalization that can rep-
resent existing techniques such as “history heuris-
tics”, “RAVE”, or “OMA” — contextual action value
estimators or abstractors that generalize across spe-
cific contexts. Second, we incorporate recent ad-
vances in estimator averaging that enable guiding
search by combining the online action value esti-
mates of any number of such abstractors or sim-
ilar types of action value estimators. Unlike pre-
vious work, which usually proposed a single ab-
stractor for either the selection or the rollout phase
of MCTS simulations, our approach focuses on
the combination of multiple estimators and applies
them to all move choices in MCTS simulations. As
the MCTS tree itself is just another value estima-
tor — unbiased, but without abstraction — this blurs
the traditional distinction between action choices
inside and outside of the MCTS tree. Experi-
ments with three abstractors in four board games
show significant improvements of ME-MCTS over
MCTS using only a single abstractor, both for
MCTS with random rollouts as well as for MCTS
with static evaluation functions. While we used
deterministic, fully observable games, ME-MCTS
naturally extends to more challenging settings.

1 Introduction

Sequential decision-making problems arise in a variety of do-
mains, and require strong algorithms to find good solutions.
Significant progress has been achieved in the field by study-
ing search in games. One particularly successful approach
is Monte Carlo Tree Search (MCTS), which excels in large
search spaces due to its selective sampling of promising ac-
tions. If exploration and exploitation are traded off properly,
MCTS has been shown to converge to the optimal policy in
the limit [Kocsis and Szepesvéri, 20061, while providing ap-
proximations at any time. Among other domains, it has been

successful in General Game Playing [Finnsson, 2012], Gen-
eral Video Game Playing [Liebana er al., 2016], and was an
essential part in recent breakthroughs in deterministic board
games [Silver et al., 2017, Silver er al., 2018].

Vanilla MCTS typically stores value estimates in tree nodes
that represent states of the underlying domain. There is no
sharing of information between different nodes in vanilla
MCTS, and the search therefore does not exploit similarity
between states. Efforts towards effective generalization have
been recently largely focused on offline learning, such as the
deep neural networks used by AlphaZero for estimating both
the value of a visited state as well as the optimal policy in that
state [Silver ef al., 2018]. Their offline training requires them
to generalize across all states that are likely to ever be visited
in any episode of the domain at hand, and therefore typically
needs an extremely large number of training samples and a
very powerful function approximator.

In contrast to this, our contribution addresses online gen-
eralization in search. The promise of online generalization is
that it can specialize to the current episode, and learn from
the states actually encountered during search. Previous ap-
proaches to online generalization have typically either been
restricted to the selection phase or to the rollout phase of
MCTS; we aim at applying generalization throughout entire
MCTS simulations. Previous approaches have also usually
been restricted to a single technique for value estimation us-
ing online generalization; we instead offer as our main con-
tribution a method for combining multiple value estimators—
called Multiple Estimator Monte Carlo Tree Search (ME-
MCTS)—where any number of estimators with different gen-
eralization strategies can be plugged in.

The estimators we use for testing our approach here are
contextual action value estimators, also called history ab-
stractors. We provide a formalization of this class of value
estimators, which includes several online generalization tech-
niques from the literature, and demonstrate empirical perfor-
mance by combining specific example estimators in deter-
ministic benchmark games from the literature. Note however
that ME-MCTS is neither restricted to history abstractors nor
to deterministic games.

The remainder of this article is structured as follows: Sec-
tion 2 describes our concept of contextual value estimates,
and the abstractors that provide them. Section 3 explains
the use of several value estimators to guide MCTS. Section



4 presents experimental results, both for single abstractors
as well as combinations of multiple abstractors, and both for
MCTS using rollouts as well as MCTS using evaluation func-
tions. Section 5 relates this paper to the literature, and Section
6 concludes and outlines future work.

2 Contextual Action Value Estimates through
History Abstractors

In this section we formalize the concept of history abstrac-
tors, which essentially encapsulate an abstraction function to-
gether with lookup tables for running average and uncertainty
statistics, and we define the specific abstractors used in our
experiments presented in Section 4.

We assume fully observable game domains throughout this
article. Let the history of the game up to time ¢ be the se-
quence hy = (sg,a0,81,0a1,--.,5¢) € H, with 59 € S the
starting state of the game, s; the current state, and a; € A
the actions leading from state to state. A history abstractor
or simply abstractor A = {C, f,Q, N} consists of a set of
contexts C; a history abstraction function f : H x A — C
mapping histories' to the contexts that the abstractor is main-
taining action value estimates for; action value estimates
Q : Cx A — R for all legal actions in all contexts; and
sample counts N : C x A — N for all legal actions in all
contexts. f defines an equivalence relation on the set of his-
tories H, inducing equivalence classes of histories that are
considered similar and generalized over by mapping them to
the same context. () and N are initially zero everywhere.

After completing a simulation (iteration) ¢ of Monte Carlo
Tree Search with cumulative return R, an abstractor A up-
dates its statistics (sample count N4 and value estimate @ 1)
for every action a; that was preceded by history h; in the sim-
ulation, using its history abstraction function f4:
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During future simulations, these estimates can then be used
to choose actions, as outlined in Section 3.

While we are not proposing novel abstractors here, the
concept of history abstractor is useful to us in order to sub-
sume a number of online generalization approaches from
prior MCTS work. It also defines a common interface that
allows us to plug multiple action value estimators of this type
into ME-MCTS for our experiments in Section 4.

The “minimal” abstractor uses a separate context for each
history: fhistory (R¢, a¢) = hy. This is the MCTS tree itself—
not generalizing, but providing unbiased value estimates.
Note that searching over histories leads to actual tree search,
while searching over states can lead to a directed acyclic
graph (DAG), in which a given node can have more than

!The next potential action a; is provided to enable abstractors to
condition on it, e.g. the abstractor Asx3 described later. We refer
to both h; and (h:, a¢) as histories in the text, but use notation to
clarify where necessary.

one immediate ancestor. The corresponding abstractor to a
DAG would use fyue(he,at) = s¢. For Markovian states,
this abstractor A, is unbiased just like Apisory and con-
verges at least as fast. In this paper however we use pure
vanilla MCTS as baseline, without taking transpositions into
account. Apigory replaces the traditional MCTS tree here,
which is why we also call it the “tree estimator” even though
that tree is represented by ) and N tables just like in any
other abstractor.

The “maximal” abstractor only uses a single context for all
histories: fgiobai(ht,a;) = 0. This corresponds to a global
action value table that ignores state, and has for example
been used by the Progressive History technique (in the selec-
tion phase only) [Nijssen and Winands, 2010], or MAST/TO-
MAST (in the rollout phase only) [Finnsson and Bjornsson,
2010]. While the value estimates of Ahist(,ry only summarize
returns for the same action with the same history, Agigpa SUM-
marizes returns for each action regardless of history.

Other online generalization techniques use abstractors that
fall in between those extremes. The N-Gram Selection Tech-
nique (NST) for example learns action value estimates, which
it only applies to rollouts, in three different contexts: the
global context, the context of the immediately preceding ac-
tion fr.gram(h¢, at) = a;—1, and the context of the two pre-
ceding actions f3.gram(he,at) = (az—2,a4—1) [Tak et al.,
2012]. The PAST and FAST techniques use contexts defined
by the predicates that describe states in General Game Play-
ing (GGP), and by higher-level game features that can be in-
ferred from GGP game descriptions, respectively [Finnsson
and Bjornsson, 2010]. Opponent Move Abstraction (OMA),
proposed for the selection phase only, uses all previous ac-
tions of the same player as context, abstracting away oppo-
nent actions [Baier and Kaisers, 2020]. The Rapid Action
Value Estimate (RAVE) technique [Gelly and Silver, 20071
and its variants, typically only applied in the selection phase,
correspond to history abstractors with a slight modification:
They map a given history to all of the history’s prefixes:
frave(he, ar) = {ho,h1,...,ht}. Such mappings of histo-
ries to multiple contexts can result in many updates per sam-
pled action, and therefore lead to extremely fast estimation.

For the experiments in this paper, we consider three ab-
stractors: Agigpar and Aoma as described above, as well as
Aszx3, whose abstraction function maps hy, a; to the 3 x 3
board squares around the target square of action a;. This pro-
vides a localized view on the part of state that is likely most
relevant to a;, and generalizes to all states which are identical
on these squares. We expect A, «,, for some n to work in a
wide range of grid-based games with somewhat localized ef-
fects of actions. It resembles the local view of the receptive
fields in convolutional neural networks, and is similar to an
abstraction used by Cazenave [2016].

Beyond the kind of abstractors used in this work, ME-
MCTS can also be used with other types of action value es-
timators. This includes for example abstractors that do not
maintain separate value estimates for every legal action, but
generalize over actions as well; and estimators that use func-
tion approximators instead of lookup tables, which enables
them to estimate the values of unseen contexts. Further-
more, there is an approach to online generalization in MCTS



that does not use contexts or abstractions as we do here, but
is based on a similarity or distance metric on states instead
[Srinivasan er al., 2015; Xiao et al., 2018]. As long as these
methods are able to assess their own uncertainty, they are in
principle compatible with ME-MCTS; if the uncertainty can
be expressed by pseudocounts, we can in fact apply the exact
technique described in the next section.

3 ME-MCTS—Guiding MCTS with
Contextual Action Value Estimates

In the previous section, we described how abstractors provide
us with contextual action value estimates. In this section, we
outline how different action value estimates are used to guide
the search in our proposed algorithm ME-MCTS.

Traditionally, MCTS is understood as choosing actions in
two distinct phases in the tree (selection phase) and outside
of the tree (rollout phase) [Chaslot er al., 2008al, which to-
gether make up all actions of a single simulation. In the se-
lection phase, vanilla MCTS chooses actions based on value
estimates stored in the tree nodes, using some bandit algo-
rithm such as the classic UCB1 [Auer et al., 2002]. In the
rollouts, no value estimates are available in vanilla MCTS, so
actions are in the simplest case chosen uniformly at random.

ME-MCTS however chooses all actions in the same way,
blurring the traditional distinction between selection and roll-
out phases. When making an action choice during a given
simulation with previous history h;, it assigns a score to every
legal next action a;. Extending previous work on combining a
single abstractor estimate with MC estimates [Gelly and Sil-
ver, 2011], this score is a convex combination of all available
action value estimates: that of the unbiased estimator Apisory
(the tree), and those of any number of other estimators used.
If no other estimators are used, ME-MCTS reduces to vanilla
MCTS. After every simulation, all value estimators are up-
dated for all traversed actions in their corresponding context.

For computing the convex combination, ME-MCTS ap-
plies insights on optimally combining estimators [Lavancier
and Rochet, 2016]. In line with this previous work, we seek
to determine the weights A € R¥, such that the combined
action score is defined by A\TT = Zle AT, where T =
(T1,...,T})7 is a collection of value estimates’>. We con-
sider only convex combinations, i.e. imposing 0 < \; < 1,Vi
and ), A; = 1. This hypothesis class strikes a bias-variance
tradeoff of being expressive yet retaining identifiable optimal
weights, with nuances being discussed in previous work.

We seek to find the optimal weight vector that
minimizes mean squared error (MSE), ie., A* =
argminyE(ATT —0)> = argminy ATS), where 6
is the true parameter to be estimated, and ¥ =
E[(T —01)(T — 01)7] is the MSE matrix. Assuming the
MSE matrix is well defined and non-singular, the explicit so-
lution is known to be [Lavancier and Rochet, 2016]
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>We consider the problem for a specific h:, a; here, dropping
notational dependency of A\, 7', 0, Q, X etc. on hy, a; for simplicity.

In MCTS, the true parameter to be estimated is the ex-
pected simulation return. The collection of estimates com-
prises the unbiased MC estimate along with generalizing es-
timates’ c.g. T = (thstornyBxSnglobal)' The MSE ma-
trix contains entries ¥;; = E [(T; — 0) (T; — 6)]. Note that
the main diagonal gives MSE(T};) = o7 + b?, with variance
o2 and bias b; = |E(T;) — 0|. Off-diagonal entries involv-
ing the unbiased estimator Qpsory correspond to covariances,
and are thus zero whenever the two respective estimators are
independent®. Consider the following example MSE matrix,
corresponding to the estimator triplet above.

2
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Since X is typically unknown in practice, it must be approx-
imated by some estimate 3. Since 3 is used to compute
weights for averaging, the most crucial aspect is to capture
relative uncertainty in the estimates 7;. Such an estimate of
3 could be tuned as a meta-parameter and be held constant, or
be derived from an approximate model, or from online obser-
vations during search. In this work, we compute 3. based on
a model for context-dependent variances (explained below),
with tuned meta-parameters for context-independent biases,
neglecting co-dependencies (constants x;; = 0,7 # 7). We
leave it to future work to further refine this estimation.

We estimate the variances assuming a Bernoulli distribu-
tion of simulation returns with expectation 6. Let n; be the
number of samples, and E(T;) = 6; be the underlying expec-
tation for each estimator 7, with #; = 6 (i.e., the first estima-
tor corresponds to the unbiased history estimator). Assuming
T; is a running average estimator of simulation outcomes R;
(here viewed as a random variable over all histories that fall
into the same context), 02 = Var(T;) = Vdr(R ) IfR;isa
Bernoulli trial with parameter 6;, Var(R;) = 0 (1-96;).

The true expectations #; are unknown, and estimator com-
binations are expected to be most crucial for low sample
counts. However, if all initial simulation returns . were the
same (all one or all zero), then the plugin estimator Var(7;) =

M = 0, which would under-estimate the uncertainty

espemally in thsmry Therefore, we instead estimate 02 by
plugging in a maximum entropy estimate of #;, or more pre-
cisely 0, = arg maxg,co, 0;(1 — 6;) within the simulation
returns’ Wilson score interval with continuity correction ©.

To trade off exploration and exploitation for our estimator
combination, we finally add an upper confidence bound to it.
To compute individual upper confidence bounds for all esti-

mates T; as U; = T; + w;, we use the AUER algorithm’s

confidence width w; = ¢; 8 logt , where ¢; is an exploration

parameter and ¢ is time measured in total number of simula-
tions so far. AUER is similar to UCB, and was developed for
sleeping bandits with changing sets of arms [Kleinberg et al.,
2010]. The motivation for this is that the set of legal actions

3Since any generalization subsumes the samples of Qhistory, this
independence can in fact be induced by removing local samples from
the abstract estimate when computing T. We do not do this here.



is not always constant for all states within a given context.
After computing individual upper confidence bounds U; with
AUER, we then also need a way to combine them into an up-
per confidence bound for our linear combination—built from
estimates based on a different number of samples, and with a
different bias: The upper confidence bound Uy = ATT + w)
for the combined estimator is determined by

wy = /> Nw?. 5)

This would be an exact upper confidence interval for in-
dependent estimators* of normally distributed samples, for
which the confidence width of averages would yield w; =
z+/Var(T;), with a scaling factor z. We use it as an approxi-
mation of confidence bounds for combining arbitrary widths
w;, which in our experiments come from the AUER formula.

4 Experimental Results

We tested ME-MCTS in four different domains: Break-
through, Knightthrough, Othello, and Rolit. These are fully
observable, deterministic, alternating-turn games for two to
four players; ME-MCTS does not in principle require these
constraints however. All experiments allowed for 250 ms per
move, in order to fairly expose the tradeoff between improv-
ing search with multiple estimators and the additional com-
putational overhead of computing and combining abstrac-
tors. The implemented abstractors each have two parame-
ters: a bias parameter that is used to compute their influ-
ence on every move choice, and an exploration factor for
the exploration-exploitation tradeoff of the AUER algorithm.
Vanilla MCTS has one parameter: the exploration factor of
UCBI. The parameters of all MCTS and ME-MCTS variants
were first tuned, followed by a test of the best found parame-
ter settings with at least 1000 games; the results of these tests
are presented here.

Our experiments are divided into two groups. In the first
group, described in Subsection 4.1, we did state evaluation
through Monte Carlo rollouts as in traditional MCTS. In the
second group, presented in Subsection 4.2, we assumed that
an evaluation function is available for state evaluation, lead-
ing to the recently more popular MCTS variants without any
Monte Carlo part [Silver et al., 2017]. These typically call
the evaluation function as soon as the simulation leaves the
tree, omitting the rollout phase entirely. Even though in ME-
MCTS, there are other estimators than the tree which could
still guide out-of-tree moves, we follow this practice of cut-
ting off as soon as we encounter a history that has not yet been
seen and stored in Apgiory, i.€. the tree, and evaluate there.

It is not clear a priori whether abstractors would work bet-
ter or worse with evaluation functions compared to rollouts:
On the one hand, contextual value estimators would profit just
like the vanilla MCTS tree from evaluation function returns
with higher quality and lower variance than random rollout
returns. On the other hand, abstractors can learn from every
move in a given simulation—so omitting rollouts results in

War (6x) =D AIVar(T) +2 > A Cov(T3, Ty), but
i 1<i<j<k
independent estimators have zero covariance.

much less data for them. Our combination of estimators and
upper confidence bounds computes weights that respond to
relative variance. Even if we devised the variance model for
rollouts, the distribution-specific numerator is dominated by
the contextual sample counts in the denominator. We may
thus expect benefits from online generalization over both MC
rollout and evaluation function returns, even if the latter yield
a different empirical distribution.

4.1 ME-MCTS using Rollouts

This section summarizes our experiments for MCTS using
rollouts for state evaluation. Vanilla MCTS uses uniformly
random rollouts, and ME-MCTS simply plays out its simula-
tions to the end of the game. In the first set of experiments, we
added each of the three abstractors Agiobal, Asx3, and Aoma
individually to ME-MCTS to establish their performance as
baseline (only combining them with the tree, Apisiory). In the
second set, we added multiple abstractors to ME-MCTS, in
order to test our estimator combination method.

Adding Single Abstractors

Figure 1 shows the results of using individual abstractors in
ME-MCTS. Agiopa worked well in all four games, Asy3 in
all games but Rolit, and Aoma improved MCTS in all do-
mains but Breakthrough. An abstractor can be ineffective in
a given domain for various reasons: Its abstraction function
may be too costly to compute at the given short time limit for
example, or its abstraction may not capture useful similari-
ties between states or histories in the domain at hand. These
results primarily serve to give us an impression of which ab-
stractors are at all promising for our estimator combination
technique—the quality of an estimator combination of course
depends on the quality of the individual estimators available.

= ME-MCTS with Aglobal V8. vanilla MCTS
= ME-MCTS with As3y3 vs. vanilla MCTS
= ME-MCTS with Aoma Vs. vanilla MCTS

Breakthrough

Knightthrough
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| | |
0% 20% 40% 60% 80%
win rate
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Figure 1: Performance of ME-MCTS using the global, 3x3, and
OMA abstractors individually, and using rollouts.

Adding Multiple Abstractors
In our next experiments, we used ME-MCTS to test the
combination of Agjgpa and Az 3, the combination of Agjopal



and Aoma, and the combination of Asy3 and Aoma. In
each game, we tested these combinations of two abstractors
against the best individual abstractor found before, in order
to demonstrate the benefit of estimator combination through
ME-MCTS. We did not find individually ineffective abstrac-
tors to be effective when included in abstractor combinations
either. Figure 2 presents the results, showing the best found
combination of two abstractors in each domain, and its per-
formance against the best single abstractor according to Fig-
ure 1 (which was Agjopa for all games). We can see that in all
test domains except Rolit, two abstractors can be more effec-
tive at guiding the search than a single one: Agioba and Ay 3
are significantly stronger than only Agigpa in Breakthrough,
Knightthrough, and Othello.

In addition, we tested the triple combination of Agjgpar,
Asxs, and Aoma against the best two abstractors found in
each domain. In Rolit, where no combination of two abstrac-
tors worked well, we tested the triple combination against
the best single abstractor Agjoba instead. Figure 2 shows that
three abstractors were significantly better than two in Break-
through and Othello, while no further improvement over two
abstractors could be found in Knightthrough, or over one ab-
stractor in Rolit—the only domain not to show any benefit of
estimator combinations here. This could be due to the over-
head being too expensive relative to the short time limit and
fast random rollouts we used in our experiments. Future work
may explore this at other time settings, and with computation-
ally heavier rollouts which would tolerate more overhead>.

= ME-MCTS using best two abstractors vs. best single abstractor
= ME-MCTS using all three abstractors vs. best 1 or 2 abstractors
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Figure 2: Performance of ME-MCTS using combinations of the
global, 3 x 3, and OMA abstractors, and using rollouts.

4.2 ME-MCTS using Evaluation Functions

This section describes our experiments for MCTS using static
evaluation functions for state evaluation. Our evaluation
functions had the classic form of linear combinations of game
board features. They were tuned in advance, and we ensured
that at 250 ms per move, MCTS using them is significantly
stronger than MCTS using random rollouts in all domains.

5 Also note that Aoma works particularly well together with the
MCTS enhancement of progressive widening [Baier and Kaisers,
2020], which was not considered here for simplicity.

In the first set of experiments, we again tested each of the
three abstractors individually in ME-MCTS, and in the sec-
ond set, we again tested them in combination.

Adding Single Abstractors

Figure 3 shows the results of using single abstractors in ME-
MCTS, now using evaluation functions. All abstractors sig-
nificantly improved vanilla MCTS in all test domains. As a
side note, future work could also analyze the connections be-
tween offline generalization by an evaluation function, online
generalization through abstraction, and possible interactions.

= ME-MCTS with Agiobal Vs. vanilla MCTS
= ME-MCTS with Asy3 vs. vanilla MCTS
=ME-MCTS with Agma vs. vanilla MCTS

Breakthrough i
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0% 20% 40% 60% 30%
win rate

100%

Figure 3: Performance of ME-MCTS using the global, 3x3, and
OMA abstractors individually, and using evaluation functions.

Adding Multiple Abstractors

After finding which of the three abstractors individually work
best in our test domains, we again tested all combinations
of two abstractors against the best single abstractors, and the
combination of all three abstractors against the best combi-
nations of two abstractors, as described in the previous sub-
section. Figure 4 displays the results. In all test domains ex-
cept Rolit, two abstractors were significantly stronger than a
single one again: Agopa and Agma are significantly stronger
compared to Asys in Breakthrough (which is interesting as
it shows that the best abstractor “team” does not always have
to contain the best “solo” abstractor), Agjoba and Aoma are
stronger than only Agopa in Knightthrough, and Aggpa plus
Asy 3 outperforms using only Agigpar in Othello. Moreover,
in Breakthrough and Knightthrough, the combination of all
three tested abstractors also significantly outperformed the
best combination of any two abstractors.

Taken together, these results point strongly towards the
merit of the idea of combining several estimators in ME-
MCTS. Naturally, performance depends on the quality and
the computational cost of the available individual estimators.
Additional work on optimizations, incremental computations
of abstractions, caching strategies etc. could further reduce
overhead and thereby make ME-MCTS even more broadly



applicable. In addition, we expect the overhead of individ-
ual abstractors as well as their combination in ME-MCTS to
be much less relevant when using state-of-the-art deep neu-
ral networks for state evaluation instead of the much faster,
handcoded functions we used to simplify experimentation. In
preliminary experiments in Othello at 1000 simulations per
move for example — with the same evaluation function but ig-
noring overhead — the best tested combination of two abstrac-
tors achieved a winrate of 64.8% instead of 58.9% against
the best single abstractor, and the combination of all three
achieved 55.4% instead of 47.6% against the best two.

= ME-MCTS using best two abstractors vs. best single abstractor
= ME-MCTS using all three abstractors vs. best 1 or 2 abstractors
T T T T
Breakthrough l [ r{—< —
nghtmmughﬂ |
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0% 20% 40% 60% 80% 100%
win rate

Figure 4: Performance of ME-MCTS using combinations of the
global, 3 x 3, and OMA abstractors, and using evaluation functions.

5 Related Work

Almost all previous online generalization approaches for
MCTS were either applied to the selection phase or to the
rollouts, but not to both. However, applying generalization
only during selection means missing out on improving the
majority of actions in most simulations, as MCTS trees typi-
cally only cover a small part of the full episode; and applying
generalization techniques only during rollouts means making
them inapplicable to the currently very popular MCTS vari-
ants in which rollouts are replaced by static evaluation func-
tions [Silver et al., 2017; Silver et al., 2018]. To our knowl-
edge, the only existing online learning approach applied to
both the selection and the rollout phases is based on RAVE
[Rimmel et al., 2010]. This partially inspired our approach
to using information acquired online throughout entire simu-
lations; however, Rimmel et al. use RAVE estimates in both
phases in different ways, while we are aiming at a more uni-
fied algorithm for choosing actions that can be applied con-
sistently from the root state of the search to the end of each
simulation. They combined no other estimators with RAVE.
Almost all previous online generalization approaches for
MCTS used a single action value estimator. However, Gen-
eral Game Playing (GGP) led to the development of a fam-
ily of abstractors [Finnsson and Bjornsson, 20101, including
MAST, TO-MAST, PAST, and FAST; these were applied to
rollout action choices both individually, as well as in combi-
nation with RAVE—which is the only case of a combination

of two value estimators known to us, and one inspiration for
Multiple Estimator MCTS.

A further influence for our approach was a note on future
work by Powley et al. [2013]: The idea of adding multiple
different value estimators to MCTS was alluded to here, as
well as the idea of combining estimators at different abstrac-
tion levels, which allows us to gradually shift our focus from
weak abstraction to strong abstraction as we guide the search
from the root state to the end of a simulation. However, these
ideas were not further developed, implemented or tested.

Combining estimators, such as our abstractors, is an es-
tablished technique in other fields and the basis of ensem-
ble learning for classification and regression, with tech-
niques such as bagging (resampling a dataset) and boost-
ing (re-learning on errors) that improve generalization of-
fline [Mendes-Moreira et al., 2012]. While we also use a
linear combination to integrate multiple estimators, we face
an online setting and show how several given estimators can
be combined to guide search.

6 Conclusions and Further Work

This article has introduced the algorithmic framework ME-
MCTS for online generalization in MCTS. Experiments have
shown the efficacy of combining multiple types of abstraction
in several benchmark games, achieving significant improve-
ments compared to using individual abstraction techniques
both in conditions assuming classic rollout-based MCTS, and
in conditions using an evaluation function.

For future work, evaluating ME-MCTS in MDPs
or stochastic games, partially observable domains, or
simultaneous-action domains could offer interesting applica-
tion perspectives, especially in more “life-like” settings with
larger amounts of superfluous information that can be ab-
stracted away without significant loss of performance—board
games are already relatively condensed. Furthermore, our
work suggests several avenues of improving the performance
of state or history abstraction. In practice, it may be most ef-
ficient to estimate the MSE matrix state-dependently and on-
line with domain-specific priors that transfer from search to
search. One could also initialize individual abstractors with
heuristic values, as it has been done for MCTS trees [Chaslot
et al., 2008b]. Multi-valued abstractors (mapping a given his-
tory to more than one abstraction) might be worth exploring
in more depth, in order to learn even more from every single
simulation. Currently, RAVE is the only existing algorithm
using this approach. It remains an open problem as well how
to learn optimal domain abstractions f4(hs,a;) end to end
(rather than approximating @) 4 directly), e.g. using neural
networks. Finally, incorporating linear or non-linear function
approximators that can assess their uncertainty—by pseudo-
counts or otherwise—will elevate ME-MCTS to an even more
general online generalization framework.
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